- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Aizenberg, Joanna (1)
-
Balazs, Anna C. (1)
-
Bertoldi, Katia (1)
-
Deng, Bolei (1)
-
Grinthal, Alison (1)
-
Kim, Do Yoon (1)
-
Kim, Do-Yoon (1)
-
Kim, Sangil (1)
-
Lerch, Michael M. (1)
-
Li, Shucong (1)
-
Martens, Reese S. (1)
-
Shin, Seunggwan (1)
-
Song, Hojun (1)
-
Waters, James T. (1)
-
Yao, Yuxing (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Cave crickets (Rhaphidophoridae) are insects of an ancient and wingless lineage within Orthoptera that are distributed worldwide except in Antarctica, and each subfamily has a high level of endemicity. Here, we show the comprehensive phylogeny of cave crickets using multi-gene datasets from mitochondrial and nuclear loci, including all extant subfamilies for the first time. We reveal phylogenetic relationships between subfamilies, including the sister relationship between Anoplophilinae and Gammarotettiginae, based on which we suggest new synapomorphies. Through biogeographic analyses based on divergence time estimations and ancestral range reconstruction, we propose novel hypotheses regarding the biogeographic history of cave crickets. We suggest that Gammarotettiginae in California originated from the Asian lineage when Asia and the Americas were connected by the Bering land bridge, and the opening of the western interior seaway affected the division of Ceuthophilinae from Tropidischiinae in North America. We estimate that Rhaphidophoridae originated at 138 Mya throughout Pangea. We further hypothesize that the loss of wings in Rhaphidophoridae could be the result of their adaptation to low temperatures in the Mesozoic era.more » « less
-
Li, Shucong; Lerch, Michael M.; Waters, James T.; Deng, Bolei; Martens, Reese S.; Yao, Yuxing; Kim, Do Yoon; Bertoldi, Katia; Grinthal, Alison; Balazs, Anna C.; et al (, Nature)paired with distinct reverse arcs1,2. Efforts to mimic such dynamics synthetically rely on multimaterial designs but face limits to programming arbitrary motions or diverse behaviours in one structure3–8. Here we show how diverse, complex, non-reciprocal, stroke-like trajectories emerge in a single-material system through self-regulation. When a micropost composed of photoresponsive liquid crystal elastomer with mesogens aligned oblique to the structure axis is exposed to a static light source, dynamic dances evolve as light initiates a travelling order-to-disorder transition front, transiently turning the structure into a complex evolving bimorph that twists and bends via multilevel opto-chemo-mechanical feedback. As captured by our theoretical model, the travelling front continuously reorients the molecular, geometric and illumination axes relative to each other, yielding pathways composed from series of twisting, bending, photophobic and phototropic motions. Guided by the model, here we choreograph a wide range of trajectories by tailoring parameters, including illumination angle, light intensity, molecular anisotropy, microstructure geometry, temperature and irradiation intervals and duration. We further show how this opto-chemo-mechanical self-regulation serves as a foundation for creating self-organizing deformation patterns in closely spaced microstructure arrays via light-mediated interpost communication, as well as complex motions of jointed microstructures, with broad implications for autonomous multimodal actuators in areas such as soft robotics7,9,10, biomedical devices11,12 and energy transductionmaterials13, and for fundamental understanding of self-regulated systems14,15more » « less
An official website of the United States government
